Light-harvesting pigment-proteins of photosystem I in maize. Subunit composition and biogenesis.
نویسندگان
چکیده
Three different pigment-binding proteins of the light-harvesting complex (LHC I) of maize photosystem I (PS I) have been isolated. Absorption and fluorescence excitation spectral analyses showed that each pigment-protein can transfer absorbed energy from its carotenoid and/or chlorophyll b components to chlorophyll alpha. Their apoproteins with apparent sizes of 24 (LHC Ia), 21 (LHC Ib), and 17 (LHC Ic) kDa have been purified to homogeneity. Differences in their pigment and amino acid compositions and in their reactions with antibodies demonstrate that the two smaller pigment-proteins are not proteolytically derived from the largest one. LHC Ib's apoprotein is particularly enriched in cysteine residues. None of the three apoproteins cross-reacted with antibodies raised against the major light-harvesting chlorophyll a/b-protein of photosystem II (LHC IIb) or against the PS I core complex (CC I) subunits. Studies of the biogenesis of PS I during greening of etiolated plants showed that all of the CC I subunits accumulated to a detectable level prior to the appearance of the 17-kDa subunit of LHC I, the accumulation of which preceded those of the 24- and 21-kDa subunits of LHC I. In addition, subunit VI of CC I is shown to be differentially expressed in mesophyll and bundle sheath cells; a slightly larger form of it accumulates in mesophyll than in bundle sheath thylakoids during plastid development.
منابع مشابه
Composition and structure of photosystem I in the moss Physcomitrella patens
Recently, bryophytes, which diverged from the ancestor of seed plants more than 400 million years ago, came into focus in photosynthesis research as they can provide valuable insights into the evolution of photosynthetic complexes during the adaptation to terrestrial life. This study isolated intact photosystem I (PSI) with its associated light-harvesting complex (LHCI) from the moss Physcomitr...
متن کاملDevelopment of Photosystem I and Photosystem II Activities in Leaves of Light-grown Maize (Zea mays).
To compare chloroplast development in a normally grown plant with etiochloroplast development, green maize plants (Zea mays), grown under a diurnal light regime (16-hour day) were harvested 7 days after sowing and chloroplast biogenesis within the leaf tissue was examined. Determination of total chlorophyll content, ratio of chlorophyll a to chlorophyll b, and O(2)-evolving capacity were made f...
متن کاملSupramolecular organization of photosystem I and light-harvesting complex I in Chlamydomonas reinhardtii.
We report a structural characterization by electron microscopy and image analysis of a supramolecular complex consisting of photosystem I and light-harvesting complex I from the unicellular green alga Chlamydomonas reinhardtii. The complex is a monomer, has longest dimensions of 21.3 and 18.2 nm in projection, and is significantly larger than the corresponding complex in spinach. Comparison wit...
متن کاملExcitation decay pathways of Lhca proteins: a time-resolved fluorescence study.
Light-harvesting complex I (LHCI), which serves as a peripheral antenna for photosystem I (PSI) in green plants, consists mainly of four polypeptides, Lhca1-4. We report room temperature emission properties of individual reconstituted monomeric Lhca proteins (Lhca1, -2, -3, and -4) and dimeric Lhca1/4, performed by steady-state and time-resolved fluorescence techniques. The emission quantum yie...
متن کاملStructure and dynamics of photosystem II light-harvesting complex revealed by high-resolution FTICR mass spectrometric proteome analysis.
Structure and dynamics of membrane-bound light-harvesting pigment-protein complexes (LHCs), which collect and transmit light energy for photosynthesis and thereby play an essential role in the regulation of photosynthesis and photoprotection, were identified and characterized using high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). LHCs from photosystem II (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 264 7 شماره
صفحات -
تاریخ انتشار 1989